Time series forecasting by neural networks: A knee point-based multiobjective evolutionary algorithm approach

نویسندگان

  • Wei Du
  • Sunney Yung-Sun Leung
  • Chun-Kit Kwong
چکیده

In this paper, we investigate the problem of time series forecasting using single hidden layer feedforward neural networks (SLFNs), which is optimized via multiobjective evolutionary algorithms. By utilizing the adaptive differential evolution (JADE) and the knee point strategy, a nondominated sorting adaptive differential evolution (NSJADE) and its improved version knee point-based NSJADE (KP-NSJADE) are developed for optimizing SLFNs. JADE aiming at refining the search area is introduced in nondominated sorting genetic algorithm II (NSGA-II). The presented NSJADE shows superiority on multimodal problems when compared with NSGA-II. Then NSJADE is applied to train SLFNs for time series forecasting. It is revealed that individuals with better forecasting performance in the whole population gather around the knee point. Therefore, KP-NSJADE is proposed to explore the neighborhood of the knee point in the objective space. And the simulation results of eight popular time series databases illustrate the effectiveness of our proposed algorithm in comparison with several popular algorithms. 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting

In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...

متن کامل

Time Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization

  Fuzzy time series have been developed during the last decade to improve the forecast accuracy. Many algorithms have been applied in this approach of forecasting such as high order time invariant fuzzy time series. In this paper, we present a hybrid algorithm to deal with the forecasting problem based on time variant fuzzy time series and particle swarm optimization algorithm, as a highly effi...

متن کامل

Interval-based Solar PV Power Forecasting Using MLP-NSGAII in Niroo Research Institute of Iran

This research aims to predict PV output power by using different neuro-evolutionary methods. The proposed approach was evaluated by a data set, which was collected at 5-minute intervals in the photovoltaic laboratory of Niroo Research Institute of Iran (Tehran). The data has been divided into three intervals based on the amount of solar irradiation, and different neural networks were used for p...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

A NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES

In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2014